ATEC302 TE Temperature Controller

Reference Manual

Rev 1.10

Mar, 2018

Table of Content

1.	Introduction	3
	1.1 Using Manuals	4
2.	System Overview	5
	2.1 System Configuration Overview	5
	2.2 Panel Dimension & Cutout	6
	2.3 Front Panel Description	6
	2.4 Back Panel Wiring Diagram	7
	2.5 USB Wiring & Color Code	7
	2.6.1 Sensor Type & Measurement Range	7
	2.6.2 Sensor Type & Dip-switch setting	9
	2.7 Menu (Parameters) Overview	9
	2.8 Error Message & Troubleshooting	9
	2.9 Power Input	. 10
3.	Front Panel Operation	11
	SET	
	3.1 Push Buttons	11
	i. Return to Top Level Display	11
	ii. Go to Menu Mode	11
	iii. Select Parameters in Menu	11
	iv. Changing Parameter value	11
	3.2 Power UP Display Sequence	. 12
	3.3 Change the SV (Set Value) Number	. 12
4.	Parameters Description	12
	4.1 Communication Protocol	. 12
	4.1.1 Communication Method	. 12
	4.1.2 Communication Protocol Format	. 13
	4.1.3 Communication Read/Write Format	. 13
	4.1.4 Prior to Writing Your Own Software	. 15
	4.2 Read Only Parameters [x03] Table	. 15
	4.3 Read[x03]/Write[x06] Parameter Table	. 18
	4.4 Error Read Back Parameter Table	. 23
5. C	Control Method	24
	5.1 PID Control:	. 24
	5.2 Auto-tune Function:	. 24
	5.3 Programmable Step Control Profile:	256
	5.4 Alarm Function:	267
6. S	SPECIFICATIONS	28

1. Introduction

This manual contains information for the installation, operation and tuning of your Accuthermo ATEC302 TE Panel Temperature Controller, ATEC402 Din-Rail TE Temperature Controller and FTX700 High Power TE Amplifier/Driver. ATEC302 can also be connected to FTX300 or FTX100 H-bridge amplifiers.

ATEC302	ATEC402 (alpha ver.)	FTX700D	FTX100/FTX300
TE Panel Controller	TE Din-rail Controller	TE Amplifier/Driver	TE H-bridge Amp
Pic WBBBB	Pic	Pic	FTX100(6Amp) FTX300 (12Amp)
RS232/RS485/USB	USB/RS485	5~36Vdc (30Amp)	X100:0~7V, X300:7~15V

The Accuthermo microprocessor controllers are FUZZY ENHANCED "proportional + integral + derivative" (PID) controllers that come in with industry standard DIN72x72mm and Din-Rail size. The input is configurable and allows selection of input between thermocouples, RTD and Thermistor*.

The TE Amplifier is capable of running up to 700Watt of power. It is a very efficient TE power amplifier. The amplifier can run without force air (fan) under 350Watt in ambient condition. Over 350Watt, it is recommended to add in fan for proper ventilation.

The controller can talk to PC through a dedicated USB cable or a RS232 communication daughter card (option on ATEC302) that Accuthermo provides. And it comes with very sophisticated PC software for FREE.

The controllers can also be serial linked together and talk to one PC by using RS-485 communication method (option on ATEC302, default on ATEC402).

Caution: When USB cable is connected to the controller, the RS232 or RS485 communication daughter card should not be plugged inside the controller. Otherwise, it will have conflict. Accuthermo Technology Corp.

1.1 Using Manuals

There are three manuals for this system:

Reference Manual (this one): The manual is designed for user who wants to use the front panel buttons to controller the system. The users who want to write their own program to control the system. It provides the instructions of how to use the front panel buttons, the parameter table. Users are encouraged to read the following two manuals first.

TE Temperature Controller System Installation Guild: This is the must read document for user to putting the system together. It is a step-by-step guide, with lots of pictures for easy reading.

Software Installation Guild & User Manual: The software contains a very completed function sets for user to change parameters; control and run the system; monitor and logging data. It took us more than a year to design and develop the software. More than 95% of the users find the software can satisfied their task without re-writing their own software.

2. System Overview

2.1 System Configuration Overview

2.2 Panel Dimension & Cutout

2.3 Front Panel Description

LED Indication:

KLK keypad Lock: when keyboard is locked, the push bottom is not accessible, only working through the software

communication. LED lights on when keypad is enable.

PGR Program Ramp: LED lights on when temperature is ramping up/down.

PGS Program Soak: LED lights on when temperature is at soaking stage.

ENB Controller Enable: LED lights on when controller sent the Enable signal to the amplifier.

DIR Controller Hot/Cold Direction: LED indicator for the hot/cold direction command signal.

PWM *Pulse Width Modulation Signal:* LED signal lighted when PWM signal is send from controller to amplifier. During the low duty cycle, the LED might not be bright enough for visual.

AL1 Alarm #1 indicator: LED on when Alarm #1 is triggered.

AL2 Alarm #2 indicator: LED on when Alarm #2 is triggered.

2.4 Back Panel Wiring Diagram

2.5 USB Wiring & Color Code

Caution: If the USB cable has extra wire with RED (+5V) and Black (GND), user should either cut them off (recommended) or isolate those leads. Otherwise, possible electric short could happen.

2.6.1 Sensor Type & Measurement Range

There are three types of sensors supported by the TE Panel controllers

Thermocouple (TC): Thermocouple is a 2-wire temperature sensor and has polarity for each wire. Please follow the installation guild for proper connections. Accuracy: $\pm 1^{\circ}$ C

0 1 1	•
TYPE	Range
J	-120.0°C ~ 200.0°C
K	-120.0°C ~ 200.0°C
Т	-120.0°C ~ 200.0°C

Thermistor (TR): Thermistor is a resistance based temperature sensor and does not have polarity.

TYPE	Range
TR1 (2.252K ohm)	-50.0°C ~ 150.0°C
TR2 (10K ohm)	-20.0°C ~ 150.0°C

RTD PT-100 (PT): These can be 2-wire or 3-wire RTD sensors. If 2-wire is used, just short the pin7 & pin8 (PTB) together. Accuracy: ±0.2°C

TYPE	Range
DPT(PT100)	-120.0°C ~ 200.0°C

2.6.2 Sensor Type & Dip-Switch Setting

	SW1.1	SW1.2	SW1.3	SW2.1	SW2.2
тс	ON	OFF	OFF	ON	ON
РТ	ON	OFF	OFF	OFF	ON
TR	OFF	ON	ON	OFF	OFF

There is a Dip-Switch at the inside of the controller. The user needs to pull out the controller from back case. There are two blue-color Dip-Switch. Adjust the on/off setting according to the sensor type you want to use. Example: TR: Thermistor 2252 or 10k ohm – SW1:OFF-ON-ON, SW2:OFF-OFF

1. Pull out the Panel Cover

2. Sensor Setting Switch

Note: The yellow circles are the Dip-Switches and Switch setting table, the red circle showing the communication daughter card (either for RS232 or RS485) position.

Caution: if USB cable is used, the communication card (red circle area) should have no card plug in. Remove the plug-in card if user wants to use USB communication cable.

2.7 Menu (Parameters) Overview

Refer to Sec. 4.3 Parameter Table (Page 18) for Front Panel operation instruction

2.8 Error Message & Troubleshooting

Symptom	Probable	Solution
D) (velue fleching	-Input signal below the low limit	-Set a higher value to high limit.
PV value hashing	-Incorrect input sensor selection	-Check connect input sensor selection.
DV value fleehing	-Input signal below the low limit	-Set al lower value to low limit.
r v value nasning	-Incorrect input sensor selection	-Check correct input sensor selection
	-Sensor break error	-Replace sensor
oren	-Sensor not connected	-Check the sensor is connected correctly
		-Unit must be repaired or replaced.
Hder	-A/D converter damage	-Check for outside source of damage such as
		transient voltage spikes.

		-Set" Lo[L'"to a proper value
Kovpad no function	-Keypads are locked,	-If you lock the keypads, you can only use our
neypad no function	-When key locked, LED is off.	PC software to unlock it (page. 16)
Process value	-Improper setting of Ph. Ti. Td	-Start AT process to set Pb, Ti, Td
	and CT	automatically
		-Set Pb, Ti, Td manually
No heat/cold or output	-No heater/cold power -Output device defective or incorrect output used	-Check output wiring and fuse -Replace output device
All LED's and display not light	-No power to controller	-Check power lines connection
Process Value changed abnormally	-Electromagnetic Interference (EMI) or Radio Frequency Interference (RFI)	-Suppress arcing contacts in system to eliminate high voltage spike sources. Separate sensor and controller wiring from "dirty" power lines. Ground heaters
Entered data lost	-Fail to enter data to EEPROM	-Update EEPROM again

2.9 Power Input

The default setting is 9V-36V DC. There is a jumper inside the controller that you can set it for a fixed 5VDC. When using 5VDC as supply, the USB cable CANNOT work.

When using 5V setup. Not only change the 5V jumper position; there are two components next to jumper R111 and D101 needed to be shorted. Otherwise, they would affect the voltage drop of 5V.

If the R111 and D101 are shorted, the 'Input power reverse protection' is no longer working. Please be very caution on it. If that was damaged, it won't be covered by our standard warranty.

If the jumper has converted for 5VDC, connecting to supply power other than 5V will damage the system; and the warranty is void.

3. Front Panel Operation

User should learn some front panel operation during hardware installation. This section will describe more in detail.

Referring to 2.4 Menu Overview, users can select different level of menu and change the parameters using these four push buttons.

i. Return to Top Level Display

ii. Go to Menu Mode

Press and hold two buttons for 5 seconds, the screen will jump to menu mode. The RED LED line should show PIDI. It is the first level menu. By pressing button, user can select various top menus in button to select the previous menu. sequence, using LEVL LEVL LEVL LEVL LEVL LEVL LEVL LEVL PID1 PID2 PID3 PID4 ALRM OPTI PROG LOCK

Note: If keypads are locked, you can only run our PC software to unlock it (page. 16)

iii. Select Parameters in Menu

parameters. If you miss it, just press continuously until it reaches the parameter you are looking for.

iv. Changing Parameter value

The parameter is Number (ex. temperature): To change a parameter value, press to select the digit you Accuthermo Technology Corp.

want to change, the specific digit LED should be highlighted. Then press to add number or to

reduce the number. Press to confirm the value.

The parameter is Type (ex. sensor type): Use or buttons to choose the desire one.

3.2 Power UP Display Sequence

When power up the controller, the display will show from Top/Bottom display in sequence: LED all on test \rightarrow Sensor type/Temperature unit \rightarrow High Limit/Low Limit \rightarrow PV(process value)/SV(set value)

3.3 Change the SV (Set Value) Number

4. Parameters Description

4.1 Communication Protocol

4.1.1 Communication Method

One controller to one PC: There is a special USB data cable supplied by Accuthermo. It is a serial-to-USB data converter. While connecting a PC and the controller with this cable, the software Accuthermo supplied will work on this setup.

Multiple controllers to one PC: By serialized multiple controllers together through the RS485 lines (TX+/TX-). A PC act as a master and talk to those controllers as slave units. Each controller should have a unique ID address number. We recommend a RS485-to-USB converter act as a

communication agent between PC and controllers. The software supplied by Accuthermo cannot talk to multiple controllers; only one at a time with proper ID address selected.

RS232/ RS485-Modbus RTU					
Party	None				
Data bit	8 Bit				
Stop bit	1 Bit				
Baud rate	19200 bps				
CRC16	YES				

4.1.2 Communication Protocol Format

4.1.3 Communication Read/Write Format

Read Command Code: hex x03Write Command Code: hex x06

Each time a command is sent from the master (ex. Computer) to the controller, the controller receives should immediately response a similar message back to its master. For example: *SEND:* The PC send a command set (total of 8 bytes) asking for the temperature that was just measured: x01-03-1000-0001-CCCC

RETURN: The slave unit (controller) returned an 8-bytes data to its master:

x01-03-0002-01F7-CCCC. Where "x01F7" is the temperature measured in Hex format (=50.3°C); where "x" means hex format, "C" means CRC data.

	1	2	3	4	5	6	7	8		
Represent	ID	R/W Function	Parameter Address		Parameter Address		Data	a Cnt	С	RC
			or Byte count		Or	Rtn				
Byte Count	1	1 bytes	2 by	2 bytes 2 bytes		2 b	ytes			

Byte 1 - ID: It is the ID number of the controller, the default is 1.

Byte 2 - R/W Function: Read function is hex number x03, Write function is hex number x06

- Byte 3,4 Parameter Address or Return Byte Count: See the following example and description for detail.
- Byte 5,6 Data/Data Count/Data Return Count. The 2 bytes have different meanings during the read-send/return. For write process, the send return should have the same value.
- Byte 7,8 Modbus CRC: 16bits Cyclic Redundancy Check is done to prevent corrupted data during communication transmission. It takes the first known command bytes through a CRC calculation and generates the 2-CRC bytes at the end.

Write Process Example:

During the write process the response bytes should match the command set.

	1	2	3	4	5	6	7	8
Represent	ID	R/W Function	Parameter	Address	Data		CRC	
Byte Count	1	1 bytes	2 bytes 2 bytes		2 b	ytes		
	x01	x06	×00	00	x02	226	xC	200

Master ask the controller to set the SV temperature at 55.0°*C*

Response from the controller

	1	2	3	4	5	6	7	8
Represent	ID	R/W Function	Parameter Address		Address Data		CRC	
Byte Count	1	1 bytes	2 bytes 2 bytes		2 b	ytes		
	x01	x06	×00	00	x02	226	xC0	200

Read Process Example:

During the read process, you can ask for one data back, or you can ask a set of data back in sequence. The byte 3-4 is the initial parameter address. The byte 5-6 is to tell slave how many consecutive data you want. The following example only asks for one data.

	1	2	3	4	5	6	7	8
Represent	ID	R/W Function	Parameter Address		Data Cnt		<mark>a Cnt</mark> CRC	
Byte Count	1	1 bytes	2 bytes		2 b	ytes	2 b	ytes
	x01	x03	x1000		x0001		xC0	200

The master ask the controller to read current temperature (PV value)

In the response data set, the byte 3-4 is the byte count of the data return. The following example is the response data from above command. The byte 3-4 tell the master it has 2 bytes of data. The content of the return data is at byte 5-6.

	1	2	3	4	5	6	7	8
Represent	ID	R/W Function	Byte Count		Data Rtn		С	RC
Byte Count	1	1 bytes	2 bytes		2 bytes		2 b	ytes
	x01	x03	×00	02	x0	11F	xC0	222

Response from the controller (measured 28.7°C)

Note: Byte Count value =2 x Data Count value

4.1.4 Prior to Writing Your Own Software

Most users will find the software come with the system should work just fine. There are about 5% engineers need to write their own software to integrate with other hardware. To better understand how the parameters work, Please use the Protocol Section of the software that Accuthermo supplied. You can then try out all the parameters in tables of 4.2 and see how they interacting each other.

		therr chnolo	no gy	
Send Byte Addr Functio ↓ 1 ↓ 3 RD Returned B Addr Functio ↓ 1 ↓ 3 RD Addr Functio ↓ 1 ↓ 3 Decimal Value	Array DaAd1DaAd2D 1 10 10 10 10 10 10 10 10 10 10 10 10 10	ata 1 Data 2 CR 0 × 1 × 8 ad Only) ord 1Word 2 CR 0 × C5 × 2 19.7 Calc × 2	C1 CRC2 D xCA C1 CRC2 4 x59 4 x59	<u>W</u> rite E <u>x</u> it
Decimal < Decimal Num 0.0 Dec> He	> Hex Conv ber Hex Numb 0 x Dec <	Version Per Hex	ng*	Panel Buttons Disable Enable

Refer to top right pic; the protocol page of Accuthermo PC software. After read PV and converted to DegC, it shown 19.7C, and should be the same as value showing on the front panel of the ATEC302 controller. To read PV (process value = your sensor temperature), we use "\01\03\10\00\00\01\80\CA" (Hex code) to send to controller. Here is the explanation of those 8 bytes:

- a) First byte \01: the controller address.
- b) Second byte \03: to read from the controller (\06 is to write to the controller). In this case, you want to read PV from the controller.
- c) 3&4 byte \10\00: the x1000 is to read PV+PV-offset value together. In most of the case, the PV-offset is 0 (unless changed by user). So you are reading the PV value.
- d) 5&6 byte \00\01: For READ process, these two bytes does not do anything, so we just put two dummy bytes here.
- e) 7&8 byte \80\CA: The two byte CRC value after calculate the prior 6 bytes of data(\01\03\10\00\00\01).

Since read PV is a fixed value in this case, you can just write all 8 bytes showing above. You don't have to calculate CRC every time for Reading PV command.

4.2 Read Only Parameters [x03] Table

Read Only Parameters: Read parameter and value from the controller

x1000 PVP/POF **CP*FENG x1011 SVSVOF SV-SVOF **CP*FENG x1002 OUTL Output Power in Percentage **C x1002 OUTL Output Power in Percentage **C x1002 OUTL Output Power in Percentage ** x1002 OUTL Output Power in Percentage ** x1003 VEX D Alarm2 Ort, Alarm1 Oft * x101 Autotume SV initial * * x11 Autotune SV in the first positive hall cycle * * x11 Autotune SV in the first positive hall cycle * * x11 Autotune SV in the first positive hall cycle * * x11 Autotune SV in Second positive hall cycle * * x11 Autotune SV in Second positive hall cycle * * x11 Autotune SV in Second positive hall cycle * > * x11 Autotune SV in Second positive hall cycle * > > > x12	Address	Parameter Name	Contents	Unit
x1001 SVSVOF SV = SVOF *C/*F / ENG x1002 OUTL Output Power in Percentage *C/*F / ENG x = _ 0 Alarm2 Off, Alarm1 Off x = _ 1 Alarm2 On , Alarm1 On * * x = _ 2 Alarm2 On , Alarm1 On x = _ 2 Alarm2 On , Alarm1 On * * x = _ 2 Alarm2 On , Alarm1 On x = _ 2 Alarm2 On , Alarm1 On * * x = _ 2 Alarm2 On , Alarm1 On x = _ 2 Alarm2 On , Alarm1 On * * x = _ 2 Alarm2 On , Alarm1 On x = _ 2 Alarm2 On , Alarm1 On * * x = _ 2 Alarm2 On , Alarm1 On * * * * x = _ 2 Alarm2 On , Alarm1 On * * * * x = _ 2 Alarm2 On , Alarm1 On * * * * x = _ 2 Alardune SVB vs tant ramping * % * * x = _ 2 Alardune SVB vs V PI.D in analyzing and calculating * % 2 > x = _ 2 Alardune 90% SV the first negative half cycle * 2 2 > 2 > Alardune 90% SV PI.D in analyzing and calculating * 0 3 0 = 2 > 2 >	x1000	PVPVOF	PV + PVOF	°C/°F/ ENG
x1002 OUTL Output Power in Percentage % x - 0 Alarm2 Off, Alarm1 Off 1 Alarm2 Off, Alarm1 Off 2 Alarm2 On, Alarm1 Off x 2 Alarm2 On, Alarm1 Off 2 Alarm2 On, Alarm1 Off 2 Alarm2 On, Alarm1 Off x 0 Alarm2 On, Alarm1 Off	x1001	SVSVOF	SV + SVOF	°C/°F/ ENG
x1003 WKERNO x1003 WKERNO x1003 WKERNO	x1002	OUTL	Output Power in Percentage	%
x 6 0 0 _ Error Message LOER (PV lower than LOLT) x1004 RAMP TL Tim passed at script programming during ramping or soaking Sec/Min	x1003	WKERNO	 x =	Code Sec/Min

x1005	RAMP_TH			
x1006	ALM1_TL	Time left when value delay alven	Caa/Min	
x1007	ALM1_TH	nme ien when using delay airam	Sec/win	
x1008	SV0	SV + SVOF (fixed 1 decimal point)	°C/°F/ ENG	
x1009	PV0	PV value (fixed 1 decimal point)	°C/°F/ ENG	
x100A	PV1	PV history value1 (fixed 1 decimal point)	°C/°F/ ENG	
x100B	PV2	PV history value2 (fixed 1 decimal point)	°C/°F/ ENG	
x100C	ET0	SV – Pv value (fixed 1 decimal point)	°C/°F/ ENG	
x100D	ET1	SV - PV history value1 (fixed 1 decimal point)	°C/°F/ ENG	
x100E	ET2	SV - PV history value2 (fixed 1 decimal point)	°C/°F/ ENG	
x100F	Px	Proportional factor	%	
x1010	lx	Integral factor	Sec	
x1011	Dx	Differential factor	Sec	
x1012	MRx	MR factor	%	
x1013	ARx	AR factor	%	
x1014	Pout	Proportional output %	%	
x1015	lout	Integral output %	%	
x1016	Dout	Differential output %	%	
x1017	Pband	Proportional band	°C/°F/ ENG	
x1018	ARW	Integral band	°C/°F/ ENG	
x1019	LEVEL	PV Level = x0005 SV + Pband SV + ArW SV SV - ArW SV - ArW Level = x0002 Level = x0001 Level = x0001	Code	
x101A	AD0	A/D 0 after filter Count	Count	
x101B	AD1	A/D 1 after filter Count	Count	
x1F00	VER	Hardware & Firmware version		
x1F01 x1F02	SERIAL_NH SERIAL NL	Product Model number Co		

4.3 Read[x03]/Write[x06] Parameter Table

Read/Write-able Parameters: The following parameter's data can be changed or just be read out without change.

Addres s	Naming	Range	Init Value	Unit
x0000	SV	LOLT ~HILT	20.0	°C/°F
x0001	OUTL	-100.0 ~ 100.0	0.0	%
		x0000 / OFF (Turn off output)		
		x0001 / AT1 (auto-tune at SV)		
		x0002 / AT2 (auto-tune at 90% of SV)		
x0002	ENAB	x0003 / MPWR (Manual set duty cyl)	OFF	Index Code
		x0004 / SPON (Single Temp point ctrl)		
		x0005 / PROG (Run Programmable temp profile)		
		x0006 / HOLD (Hold Temp during prog profile run)		
x0003	PB1	0.00 ~ 300.00	5.0	%
x0004	TI1	0 ~ 4500	240	100mSec
x0005	TD1	0~ 1125	60	100mSec
x0006	MR1	0.0 ~ 51.0	0.0	%
x0007	AR1	0.0 ~ 100.0	50.0	%
x0008	ASP1		50.0	°C/°F
	DDO	(region-1 PID range ex. <0~50.0C)		0(
X0009	PB2	0.00 ~ 300.00	5.0	% 100m Coo
X000A		0~ 1125	240	100m Sec
X000B	ID2 MD2	0~ 1125	0.0	100111 Sec
		0.0 ~ 100.0	50.0	/0
X000D			50.0	78
x000E	ASP2	(region-2 PID range ex. <50.1~100.0C)	100.0	°C/°F
x000F	PB3	0.00 ~ 300.00	5.0	%
x0010	TI3	0 ~ 4500	240	100m Sec
x0011	TD3	0~ 1125	60	100m Sec
x0012	MR3	0.0 ~ 51.0	0.0	%
x0013	AR3	0.0 ~ 100.0	50.0	%
x0014	ASP3	LOLT ~HILT (region-3 PID range ex. <100.1~150.0C)	150.0	°C/°F
x0015	PB4	0.00 ~ 300.00	5.0	%
x0016	TI4	0 ~ 4500	240	100m Sec
x0017	TD4	0~ 1125	60	100m Sec
x0018	MR4	0.0 ~ 51.0	0.0	%
x0019	AR4	0.0 ~ 100.0	50.0	%
x001A	A1SP	LOLT ~HILT (Alarm 1 set point)	100.0	°C/°F
x001B	A1HY	-200.0 ~ 200.0 (value for alarm region or delta-t)	0.0	°C/°F
		x0007 / OFF (alarm not activate)		
		x0008 / HI (alarm on when >A1SP)		
		x0009 / LO (alarm on when <a1sp)< td=""><td></td><td></td></a1sp)<>		
		x000A / DIFH (alarm on when >delta)	055	Index
x001C	A1FU	x000B / DIFL (alarm on when <delta)< td=""><td>OFF</td><td>Code</td></delta)<>	OFF	Code
		x000C / BDHL (alarm on when out off region)		
		x000D / BDLO (alarm on when PV within region)		
		x000E / NONE (Alarm run in normal condition)		
v001D		v000E / STDV / (appro first alarm)		Index
XUUID	ATIVID		NONE	Code
1		XUUTU / LATH (lum alarm on when laich)		

		x0011 / STLA (Ignore first alarm and turn next alarm on when latch)			
x001E	A1DT	9999 ~ 0 (delay time to turn alarm on)	0	Sec/Min	
		x0012 / ALNO (alarm normal open L) when latch turn H)		Index	
x001F	A1AB	x0013 / ALNC(alarm normal close, H, when latch turn L)	ALNO	Code	
v0020		x0014 / NONE (controller keep running if alarm is latch)	NONE	Index	
20020	AILN	x0015 / STOP (controller off if alarm is latch)	NONE	Code	
v0021	ADED	LOLTHILT (Alarm 2 pat point)	100.0	°C/⁰E	
x0021	A23F A2HY	-200.0 ~ 200.0 (value for alarm region or delta-t.)	0.0	°C/°F	
XOULL	,	x0007 / OFF (alarm not activate)	0.0	0, 1	
		x0008 / HI (alarm on when >A2SP)			
		x0009 / LO (alarm on when <a2sp)< td=""><td></td><td></td></a2sp)<>			
		x000A / DIFH (alarm on when >delta)		Index	
x0023	A2FU	x000B / DIFL (alarm on when <delta)< td=""><td>- OFF</td><td>Code</td></delta)<>	- OFF	Code	
		x000C / BDHI (alarm on when out off region)			
		x000D / BDLO (alarm on when PV within region)			
		x000E / NONE (Alarm run in normal condition)			
		x000E / STDY (Ignore first alarm)			
x0024	A2MD	x0010 / LATH (turn alarm on when latch)	NONE	Index	
				Code	
		(Ignore first alarm and turn next alarm on when latch)			
x0025	A2DT	9999 ~ 0 (delay time to turn alarm on)	0	Sec/Min	
		x0012 / ALNO(alarm normal open L, when latch turn H)			
x0026	A2AB	x0013 / ALNC(alarm normal close H, when latch turn L)		Code	
		x0014 / NONE (controller keep running if alarm is latch)		Index Code	
x0027	A2ER	x0015 / STOP (controller off if alarm is latch)	NONE		
		x0016 / J			
		x0017 / K			
		x0018 / T			
	T) (D.E.	x0019 / DPT		Index	
X0028	TYPE	x001A / TR1 (2.252K)	IR1	Code	
		$x0037 / \text{IIIA} (\text{option}^* \text{ of new firmware})$			
		X0038 / IIIV (option of new firmware)			
v0029		x001D / °F	°C	Index	
10025	ONIT	x003E / ENG		Code	
		x001E / 0000 (no decimal pt)			
		x001E/00000 (one decimal pt)		Index	
x002A	DP	x003F / 00.00 (two decimal pt)	DP 1	Code	
	x0040 / 0.000 (three decimal pt, option* of new firmware)			0000	
		x0020 / REV (TE output direction rev)		Index	
x002B	DIR	x0021 / FWD (TE output direction forward)		Code	
		TYPE Range			
		J/K/T -70.0°C ~ 200.0°C			
x002C	LOLI	DPT -70.0 °C ~ 200.0°C		°C/°F	
		TR1 -30.0 °C ~ 150.0°C			

		TR2 -10.0 °C ~ 150.0°C			
x002D	HILT	Same as LOLT parameters	200.0	°C/°F	
_		x0022 / Sec (controller time unit in sec)		Index	
x002E	TUNT	x0023 / Min (controller time unit in min)	- Sec	Code	
		(Select output operation when alarm latch)			
		x0024 / 00 (Alarm1 & Alarm2 OFF, PWM & ENB OFF)			
x002F	EROP	x0025 / 01 (Alarm1 ON, Alarm2 OFF, PWM & ENB, ON)	00	Index	
		x0026 / 10 (Alarm1 ON, Alarm2 ON, PWM & ENB OFF)		Code	
		x0027 / 11 (Alarm1 ON, Alarm2 ON, PWM & ENB OFF)			
	0005	-200.0 ~ 200.0		a a /a F	
x0030	SPOF	(set-point offset)	0.0	°C/°F	
x0031	PVOF	-200.0 ~ 200.0	0.0	°C/°F	
70001	1 101	(process-value offset)	0.0	0, 1	
x0032	FILT	$0.0 \sim 99.9$ (noise filter, larger value filter noise better but delay process	0.0	Coefficient	
x0033	חו	255 ~ 1 (controller ID address)	255	address	
10000		x0028 / QEE (don't save position)	200	Index	
x0034	STAT	x0029 / ON (save current position)	- OFF	Code	
	0745	(run program start SV-t from UC)		Index	
x0035	STAR	x002B / PV	PV	Code	
		(run program start SV-t from current PV)			
x0036	BAND	0.0 ~ 200.0	20.0	°C/°F	
x0037	RI1		60	Sec/Min	
X0038	SPI ST1	LOLI ~HILI (1 st Set Point Value)	20.0	°C/°F Soo/Min	
X0039	311	v002C / BT8 (after ST time jump to BT8)	00	Sec/wiin	
		x002D / RTZ (after ST time jump to RTZ)			
		v002E / DT6 (after ST time jump to DT6)			
		x002E / RT5 (after ST time jump to RT5)	_		
		x0021 / H15 (after ST time jump to H15)	5 (alter ST time jump to RT5) 4 (after ST time jump to RT4)		
v002A	QE1	x00307 HT4 (after ST time jump to HT4)		Index	
X003A	361	x0031/ RT3 (alter ST time jump to RT3)	END	Code	
		x0032 / R12 (alter ST time jump to R12)	_		
		x0033 / RTT (alter ST time jump to RTT)	_		
		x0034 / END (After prog full of output)	_		
		x0035 / HOLD (Alter prog note DTo)	_		
		X0036 / NEXT (After prog goto RT2)			
x003B	LN1		1	count	
		Infinite loop = 9999 (X270F)			
x003C	RT2	0 ~ 9999	60	Sec/Min	
x003D	SP2		20.0	°C/°F	
X003E	512	$U \sim 9999$	60	Sec/win	
		x002C / RTo (alter ST time jump to RTo)	_		
		x002D / RT7 (alter ST time jump to RT7)	_		
		x002E / RT6 (alter ST time jump to RT6)	_		
		x002F / R15 (aller ST line jump to R15)			
	050			Index	
X003F	SF2	x0031 / R13 (after S1 time jump to R13)	END	Code	
		x0032 / R12 (after ST time jump to R12)	_		
		XUU33 / KI1 (atter SI time jump to KI1)			
		XUU34 / END (After prog turn off output)	_		
		XUU35 / HOLD (After prog hold temperature)	_		
		x0036 / NEXT (After prog goto RT3)			
x0040	1 N2	1~9998 (X2/0E) Loop number	1	count	
10070	**	Infinite loop = 9999 ($x270F$)	'	Journ	

x0041	RT3	0 ~ 9999	60	Sec/Min
x0042	SP3	LOLT ~HILT	20.0	°C/°F
x0043	ST3	0 ~ 9999	60	Sec/Min
		x002C / RT8 (after ST time jump to RT8)		
		x002D / RT7 (after ST time jump to RT7)		
		x002E / BT6 (after ST time jump to BT6)	1	
		x002E / BT5 (after ST time jump to BT5)	-	
		x0020 / BT4 (after ST time jump to BT4)	-	
	050			Index
x0044	SF3	x0031 / R13 (after ST time jump to R13)	END	Code
		x0032 / RT2 (after ST time jump to RT2)		
		x0033 / RT1 (after ST time jump to RT1)		
		x0034 / END (After prog turn off output)		
		x0035 / HOLD (After prog hold temperature)]	
		x0036 / NEXT (After prog goto BT4)	1	
		1~9998 (x270F) Loop number		
x0045	LN3		1	count
		111111111111111111111111111111111111		
x0046	RT4	0 ~ 9999	60	Sec/Min
x0047	SP4	LOLT ~HILT	20.0	°C/°F
x0048	ST4	0 ~ 9999	60	Sec/Min
		x002C / RT8 (after ST time jump to RT8)		
		x002D / RT7 (after ST time jump to RT7)		
		x002E / RT6 (after ST time jump to RT6)		
		x002F / RT5 (after ST time jump to RT5)	1	
		x0030 / BT4 (after ST time jump to BT4)	1	
v0049	SE4	v0031 / BT3 (after ST time jump to BT3)	Index	
X00 4 3	01 4	x0031 / TTS (after ST time jump to TTS)		Code
			-	
		x00337 R11 (after S1 time jump to R11)	-	
		x0034 / END (After prog turn off output)	_	
		x0035 / HOLD (After prog hold temperature)		
		x0036 / NEXT (After prog goto RT5)		
		1~9998 (x270E) Loop number		
XUU4A	LIN4	Infinite loop = 9999 ($x270F$)	1	count
V004D	DTE	0, 0000	60	See/Min
X0046	R10 805		20.0	
x004C	373 975		20.0	Soc/Min
X004D	315	v0000 / DT9 (ofter CT time jump to DT9)	00	Sec/Milli
			-	
		x002D / R17 (after S1 time jump to R17)	-	
		x002E / RT6 (after ST time jump to RT6)	_	
		x002F / RT5 (after ST time jump to RT5)		
		x0030 / RT4 (after ST time jump to RT4)		la de c
x004E	SF5	x0031 / RT3 (after ST time jump to RT3)	END	Index
		x0032 / RT2 (after ST time jump to RT2)	1	Code
		x0033 / BT1 (after ST time jump to BT1)	1	
		x0034 / END (After prog turn off output)	-	
		x0025 / HOLD (After prog held temperature)	-	
		20030 / NEVT (After prog note DTC)	-	
		1, 0008 (v070E) Lean number		
x004F	LN5	I~9998 (X270E) Loop number	1	count
v0050	BTE	0 ~ 0000	60	Sec/Min
x0050	SP6		20.0	°C/°F
x0052	ST6	n ~ 9999	60	Sec/Min
X0002	0.0	x002C / BT8 (after ST time jump to BT8)	00	
		x002D / PT7 (after ST time jump to PT7)	-	
	050			Index
x0053	SF6		END	Code
		x002F / RT5 (after ST time jump to RT5)	4	
		x0030 / RT4 (after ST time jump to RT4)		

		x0031 / RT3 (after ST time jump to RT3)		
		x0032 / RT2 (after ST time jump to RT2)]	
		x0033 / RT1 (after ST time jump to RT1)		
		x0034 / END (After prog turn off output)		
		x0035 / HOLD (After prog hold temperature)		
		x0036 / NEXT (After prog goto RT7)		
x0054	LN6	1~9998 (x270E) Loop number	1	count
x0055	BT7	0 ~ 9999	60	Sec/Min
x0056	SP7	LOLT ~HILT	20.0	°C/°F
x0057	ST7	0 ~ 9999	60	Sec/Min
		x002C / RT8 (after ST time jump to RT8)		
		x002D / RT7 (after ST time jump to RT7)		
		x002E / RT6 (after ST time jump to RT6)	-	
		x002E / BT5 (after ST time jump to BT5)	-	
		x0030 / BT4 (after ST time jump to BT4)	-	
v0058	SE7	x0031 / BT3 (after ST time jump to BT3)	END	Index
X0030	517	x0032 / PT2 (after ST time jump to PT2)		Code
		x0002 / RT2 (after ST time jump to RT2)	-	
			-	
		x0034 / END (After prog turn off output)	_	
		x0035 / HOLD (After prog hold temperature)	_	
		x002C / NEXT (after ST time jump to RT8)		
x0059	LN7	1~9998 (x270E) Loop number	1	count
0054	DTO	Infinite loop = 9999 (x270F)		0 44
X005A	R18 600		60	Sec/Min
x0056	ST8		20.0 0	C/ F Sec/Min
10000	010	v002C / BT8 (after ST time jump to BT8)	00	Gec/Will
		v002D / BT7 (after ST time jump to BT7)	-	
		x002E / PT6 (after ST time jump to PT6)	-	
		x002E / RT6 (alter ST time jump to RT6)	-	
		2002F / RTS (alter ST time jump to RTS)	-	
x005D	SF8	x0030 / R14 (after S1 time jump to R14)	END	Index
		x0031 / RT3 (after ST time jump to RT3)	_	Code
		x0032 / RT2 (after ST time jump to RT2)	_	
		x0033 / RT1 (after ST time jump to RT1)		
		x0034 / END (After prog turn off output)		
		x0035 / HOLD (After prog hold temperature)		
x005F	1 N8	1~9998 (x270E) Loop number	1	count
		Infinite loop = 9999 (x270F)	-	lus el e co
x005f	LOCK	X0028 / Keyboard Enable	Enable	Code
				Code
X0075	SCAL	$-100.0 \sim 000.0$ (option* of new firmware)	0.0	°C/°F/EN
10075	OOAL	-133.3 533.3 (option of new inniware)	0.0	
X0076	SCAH	199.9 ~ 999.9 (option^ of new firmware)		
		x003A / NONE (linear option* of new firmware)	1	Index
X0077	CUT	x003B / LO (linear option* of new firmware)	NONE	muex
		X003C / HI (linear option* of new firmware)	-	Code
		XUU3D / HILO (linear option" of new tirmware)	+	
			1	

4.4 Error Read Back Parameter Table

After PC talks to the controller, the controller will return bytes of info. If for some reason the controller felt there is an error, it will return Error Code.

	ID	Function + x80	00	Error code	x00	x00		
	xx	x8x	x00	X01	x00	x00		
Function error	Function error (write or read)							
	only with x03H or x06H							
	xx	x8x	x00	X02	x00	x00		
Address error	Addr error (write or read parameter addr)							
	parameter address of x00H ~ x57H							
Data arrar	xx	x8x	x00	X03	x00	x00		
Data error	Data error (only write)							

5. Control Method

5.1 PID Control:

A proportional-integral-derivative controller (PID controller) is a control loop feedback mechanism used in this temperature control. It attempts to correct the error between a measured Process Value and a desired Set-Point Value by calculating and then outputting a corrective action that can adjust the process accordingly and rapidly, to keep the error minimal.

Please use the software provided with this system to better understand the relationship of the PID and temperature control.

5.2 Auto-tune Function:

The controller has a build-in auto-tune function, it will calculate to a optimized set of PID values with the desired temperature.

AT1: use SV as the target temperature (default)

AT2: use $SV \times 90\%$ as the target temperature, (slower but less overshoot)

5.3 Programmable Step Control Profile:

5.4 Alarm Function:

ALARM FUNCTION

6. SPECIFICATIONS

INPUT

Thermocouple	J, K, T(default)
RTD	DIN PT-100
Thermistor (TR) Range (ATEC302 & ATEC402)	2252 ohm, 10k ohm T/C J -120C ~ 200C T/C K -120C ~ 200C T/C T -120C ~ 200C RTD -120C ~ 200C TR2252 -50C ~ 150C TR10K -20C ~ 150C
Accuracy	± 0.1 °C (*depends on sensor type and temperature range)
Cold Junction Compensation	0.1°C/°C ambient
Normal Mode Rejection	60 dB
Common Mode Rejection	120 dB
CONTROL FUNCTION	
Proportional Band	0.0 ~ 300.0 %
Integral Time	0 ~ 4000 (100mSec)
Derivative Time	0 ~ 1000 (100mSec)
Hysteresis	0.0 ~ 200.0/ 0 ~ 2000
Sampling Rate	10Hz
Temperature Control Res.	0.1°C / 0.1°F
Programmable Profile	8 Steps, ramp/soak time, loop-in-loop, complex loop profile
Control Software	Full function Window Program, plot chart, log data, engineer debug
OUTPUT	
Display Resolution	0.1°C / 0.1°F(default) or 1°C / 1°F
Alarm Relay Output	Logic 5VDC Level (on:1 /off:0)
PWM Output	Logic 5VDC Level, Freq: 1K Hz
Enable	Logic 5VDC Level
H/C Control Action	Logic 5VDC Level, Direct or Reverse (for cooling or heating direction)
Communication	USB, Serial (logic), RS485
GENERAL	
Rated Voltage	9~36 VDC(default) or 5VDC jumper setting
Power Consumption	Less than 3VA (100mA@24VDC)
Memory Backup	EEPROM and non-volatile memory (Approx. 10 years)
Operation Condition	Temperature: 0 ~ 50°C, Humidity 0 ~ 85% RH (Non-condensing)